Friday, April 20, 2012

converter decimal, biner, oktal


Exercise 1

A.      Convert into decimal
1.       (110010101) = (1x25)+
(1x28)+(1x27)+(0x26)+(0x25)+(1x24)+(0x23)+(1x22)+(0x21 )+(1x20)= (256) + (128) + (0) +(0) + (16) + (0) + (4) + (0) + (10) =(405)10

2.       (001000100)2=(0x28)+
(0x28)+(0x27)+(1x26)+(0+25)+(0+24)+(0x23)+(1x22)+(0x21)+(0x20) = (0) + (0) + (64) + (0) + (0) + (0) + (4)  + (0) + (0) = (68)10

3.       (4562)8=(4x83)+(5x82)+(6x81)+(2x80) = (2048) + (320) + (48) + (2) = (2418)10

4.       (361)8=(3x82)+(6x81)+(1x80) =  (192) + (48) + (1) = (241)10


5.       (34510)16=(3x164)x(4x163)+(5x162)+(1x161)+(0x160) = (196608) + (16384) + (1280) + (16) + (0) = (214288)10

6.       (A134)16=(10x163)+(1x162)+(3x161)+(4x160) = (40960) + (256) + (48) + (4) = (41264)10



Exercise 2

Convert the decimal number 349 and 1234 into

1.       Binary
349=      2l349
                2l174 – 1
                2l87 – 0
                2l43 – 1
                2l21 – 1
                2l10 – 1
                2l5 – 0
                2l2 – 1
                2l1 – 0
                   0 – 1

Binary=101011101
1234=    2l1234
                2l617 – 0
                2l308 – 1
                2l154 – 0
                2l77 – 0
                2l38 – 1
                2l19 – 0
                2l9 – 1
                2l4 – 1
                2l2 – 0
                2l1 – 0
                  0 – 1
Binary= 10011010010

2.       Octal
349=      8l349
                8l43 – 5
                8l5 – 3
                   0 – 5
Octl = 535

1234 =   8l1234
                8l154 – 2
                8l19 – 2
                8l2 – 3
                8l0 – 2
Octal = 2322

3.       Haxedecimal
349=      16l349
                16l21 – 13
                16l1 – 5
                     0 – 1
                Hexadecimal= 15 D
1234 =   17l1234
                17l77 – 2
                17l4 -13
                     0l4
haxedecimal = 4D2


               
Exercise 3

Convert the following numbers into binary
1.       (3241)10
Decimal to binary
3241=            2l3241
                        2l1620 – 1
                        2l810 - 0
                        2l405 -  0
                        2l202 - 1
                        2l101 - 0
                        2l50 - 1
                        2l25 - 0
                        2l12 - 1
                        2l6 - 0
                        2l3 – 0
                        2l1 – 1
                           0 – 1
Binary= 110010101001
                                       
2.       (75036)8
Octal to binary
Octal              7                              5             0             3             6
Binary           111                         101         000         011         110
Jadi (75036)8 = (111101000011110)

3.       (5C09F)16
Hexademical to binary
Hexademical              5                              C                             0                              9                              F
Binary                           0101                       1100                       0000                       1001                       1111
Jadi (5C09F)16 = (1011100000010011111)2



Exercise 4
Convert the binary number  11011001001 into:
1.       Decimal
(1x210)+(1x29)+(0x28)+(1x27)+(1x26)+(0x25)+(0x24)+(1x23)+(0x22)+(0x21)+(1x20)= (1024) + ( 512) + (0) + (128) + (64) + (0) + (0) + (8) + (0) + (0) + (1)= (1737)10

2.       Octal
Binary       011                         011                         001                         001
Octal          3                              3                              1                              1
Jadi (011011001001)2 =(3311)8

3.       Hexadecimal
Binary                       0110                       1100                       1001
Hexadecimal          6                              C                             9
Jadi (011011001001)2 =(6C9)8


               
               

               
       
               

Chapter 2
Exercise 1
Fine the sum of the binary numbers:
1.       110011 and 11010
1              1              0              0              1              1
                1              1              0              1              0              +
            10        0          1          1          0          1
Jadi hasilnya = 1001101

2.       111100 and 110001
1          1          1          1          0          0
1          1          0          0          0          1          +
11        0          1          1          0          1
Jadi hasilnya adalah = 1101101

3.       10110011 and 11100010
1          0          1          1          0          0          1          1
1          1          1          0          0          0          1          0          +

11        0          0          1          0          1          0          1
Jadi hasilnya adalah = 110010101



No comments:

Post a Comment