Exercise 1
A. Convert into decimal
1. (110010101) = (1x25)+
(1x28)+(1x27)+(0x26)+(0x25)+(1x24)+(0x23)+(1x22)+(0x21 )+(1x20)= (256) + (128) + (0) +(0) + (16) + (0) + (4) + (0) + (10) =(405)10
2. (001000100)2=(0x28)+
(0x28)+(0x27)+(1x26)+(0+25)+(0+24)+(0x23)+(1x22)+(0x21)+(0x20) = (0) + (0) + (64) + (0) + (0) + (0) + (4) + (0) + (0) = (68)10
3. (4562)8=(4x83)+(5x82)+(6x81)+(2x80) = (2048) + (320) + (48) + (2) = (2418)10
4. (361)8=(3x82)+(6x81)+(1x80) = (192) + (48) + (1) = (241)10
5. (34510)16=(3x164)x(4x163)+(5x162)+(1x161)+(0x160) = (196608) + (16384) + (1280) + (16) + (0) = (214288)10
6. (A134)16=(10x163)+(1x162)+(3x161)+(4x160) = (40960) + (256) + (48) + (4) = (41264)10
Exercise 2
Convert the decimal number 349 and 1234 into
1. Binary
349= 2l349
2l174 – 1
2l87 – 0
2l43 – 1
2l21 – 1
2l10 – 1
2l5 – 0
2l2 – 1
2l1 – 0
0 – 1
Binary=101011101
1234= 2l1234
2l617 – 0
2l308 – 1
2l154 – 0
2l77 – 0
2l38 – 1
2l19 – 0
2l9 – 1
2l4 – 1
2l2 – 0
2l1 – 0
0 – 1
Binary= 10011010010
2. Octal
349= 8l349
8l43 – 5
8l5 – 3
0 – 5
Octl = 535
1234 = 8l1234
8l154 – 2
8l19 – 2
8l2 – 3
8l0 – 2
Octal = 2322
3. Haxedecimal
349= 16l349
16l21 – 13
16l1 – 5
0 – 1
Hexadecimal= 15 D
1234 = 17l1234
17l77 – 2
17l4 -13
0l4
haxedecimal = 4D2
Exercise 3
Convert the following numbers into binary
1. (3241)10
Decimal to binary
3241= 2l3241
2l1620 – 1
2l810 - 0
2l405 - 0
2l202 - 1
2l101 - 0
2l50 - 1
2l25 - 0
2l12 - 1
2l6 - 0
2l3 – 0
2l1 – 1
0 – 1
Binary= 110010101001
2. (75036)8
Octal to binary
Octal 7 5 0 3 6
Binary 111 101 000 011 110
Jadi (75036)8 = (111101000011110)
3. (5C09F)16
Hexademical to binary
Hexademical 5 C 0 9 F
Binary 0101 1100 0000 1001 1111
Jadi (5C09F)16 = (1011100000010011111)2
Exercise 4
Convert the binary number 11011001001 into:
1. Decimal
(1x210)+(1x29)+(0x28)+(1x27)+(1x26)+(0x25)+(0x24)+(1x23)+(0x22)+(0x21)+(1x20)= (1024) + ( 512) + (0) + (128) + (64) + (0) + (0) + (8) + (0) + (0) + (1)= (1737)10
2. Octal
Binary 011 011 001 001
Octal 3 3 1 1
Jadi (011011001001)2 =(3311)8
3. Hexadecimal
Binary 0110 1100 1001
Hexadecimal 6 C 9
Jadi (011011001001)2 =(6C9)8
Chapter 2
Exercise 1
Fine the sum of the binary numbers:
1. 110011 and 11010
1 1 0 0 1 1
1 1 0 1 0 +
10 0 1 1 0 1
Jadi hasilnya = 1001101
2. 111100 and 110001
1 1 1 1 0 0
1 1 0 0 0 1 +
11 0 1 1 0 1
Jadi hasilnya adalah = 1101101
3. 10110011 and 11100010
1 0 1 1 0 0 1 1
1 1 1 0 0 0 1 0 +
11 0 0 1 0 1 0 1
Jadi hasilnya adalah = 110010101
No comments:
Post a Comment